Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractDuring infectious disease epidemics, an important question is whether cases travelling to new locations will trigger local outbreaks. The risk of this occurring depends on the transmissibility of the pathogen, the susceptibility of the host population and, crucially, the effectiveness of surveillance in detecting cases and preventing onward spread. For many pathogens, transmission from presymptomatic and/or asymptomatic (together referred to as nonsymptomatic) infectious hosts can occur, making effective surveillance challenging. Here, using SARS-CoV-2 as a case-study, we show how the risk of local outbreaks can be assessed when nonsymptomatic transmission can occur. We construct a branching process model that includes nonsymptomatic transmission, and explore the effects of interventions targeting nonsymptomatic or symptomatic hosts when surveillance resources are limited. We consider whether the greatest reductions in local outbreak risks are achieved by increasing surveillance and control targeting nonsymptomatic or symptomatic cases, or a combination of both. We find that seeking to increase surveillance of symptomatic hosts alone is typically not the optimal strategy for reducing outbreak risks. Adopting a strategy that combines an enhancement of surveillance of symptomatic cases with efforts to find and isolate nonsymptomatic infected hosts leads to the largest reduction in the probability that imported cases will initiate a local outbreak.

Original publication

DOI

10.1101/2020.11.06.20226969

Type

Journal article

Publication Date

08/11/2020