Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BackgroundPhase III trials have estimated coronavirus disease 2019 (COVID-19) vaccine efficacy (VE) against symptomatic and asymptomatic infection. We explore the direction and magnitude of potential biases in these estimates and their implications for vaccine protection against infection and against disease in breakthrough infections.MethodsWe developed a mathematical model that accounts for natural and vaccine-induced immunity, changes in serostatus, and imperfect sensitivity and specificity of tests for infection and antibodies. We estimated expected biases in VE against symptomatic, asymptomatic, and any severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and against disease following infection for a range of vaccine characteristics and measurement approaches, and the likely overall biases for published trial results that included asymptomatic infections.ResultsVE against asymptomatic infection measured by polymerase chain reaction (PCR) or serology is expected to be low or negative for vaccines that prevent disease but not infection. VE against any infection is overestimated when asymptomatic infections are less likely to be detected than symptomatic infections and the vaccine protects against symptom development. A competing bias toward underestimation arises for estimates based on tests with imperfect specificity, especially when testing is performed frequently. Our model indicates considerable uncertainty in Oxford-AstraZeneca ChAdOx1 and Janssen Ad26.COV2.S VE against any infection, with slightly higher than published, bias-adjusted values of 59.0% (95% uncertainty interval [UI] 38.4-77.1) and 70.9% (95% UI 49.8-80.7), respectively.ConclusionsMultiple biases are likely to influence COVID-19 VE estimates, potentially explaining the observed difference between ChAdOx1 and Ad26.COV2.S vaccines. These biases should be considered when interpreting both efficacy and effectiveness study results.

Original publication

DOI

10.1093/cid/ciab914

Type

Journal article

Journal

Clinical infectious diseases : an official publication of the Infectious Diseases Society of America

Publication Date

08/2022

Volume

75

Pages

e764 - e773

Addresses

MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom.

Keywords

Humans, Asymptomatic Infections, Bias, COVID-19, SARS-CoV-2, COVID-19 Vaccines, Vaccine Efficacy, Ad26COVS1