Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The impact of COVID-19 on public health and the global economy has led to an unprecedented research response, with a major emphasis on the development of safe vaccines and drugs. However, effective, safe treatments typically take over a decade to develop and there are still no clinically approved therapies to treat highly pathogenic coronaviruses. Repurposing of known drugs can speed up development and this strategy, along with the use of biologicals (notably monoclonal antibody therapy) and vaccine development programmes remain the principal routes to dealing with the immediate impact of COVID-19. Nevertheless, the development of broadly-effective highly potent antivirals should be a major longer term goal. Structural biology has been applied with enormous effect, with key proteins structurally characterised only weeks after the SARS-CoV-2 sequence was released. Open-access to advanced infrastructure for structural biology techniques at synchrotrons and high-end cryo-EM and NMR centres has brought these technologies centre-stage in drug discovery. We summarise the role of Diamond Light Source in responses to the pandemic and note the impact of the immediate release of results in fuelling an open-science approach to early-stage drug discovery.

Original publication

DOI

10.1016/j.bbrc.2020.11.041

Type

Journal article

Journal

Biochemical and biophysical research communications

Publication Date

01/2021

Volume

538

Pages

40 - 46

Addresses

Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK.

Keywords

Humans, Viral Proteins, Protein Conformation, Drug Discovery, Drug Development, COVID-19, SARS-CoV-2