Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Disaggregated population counts are needed to calculate health, economic, and development indicators in Low- and Middle-Income Countries (LMICs), especially in settings of rapid urbanisation. Censuses are often outdated and inaccurate in LMIC settings, and rarely disaggregated at fine geographic scale. Modelled gridded population datasets derived from census data have become widely used by development researchers and practitioners; however, accuracy in these datasets are evaluated at the spatial scale of model input data which is generally courser than the neighbourhood or cell-level scale of many applications. We simulate a realistic synthetic 2016 population in Khomas, Namibia, a majority urban region, and introduce several realistic levels of outdatedness (over 15 years) and inaccuracy in slum, non-slum, and rural areas. We aggregate the synthetic populations by census and administrative boundaries (to mimic census data), resulting in 32 gridded population datasets that are typical of LMIC settings using the WorldPop-Global-Unconstrained gridded population approach. We evaluate the cell-level accuracy of these gridded population datasets using the original synthetic population as a reference. In our simulation, we found large cell-level errors, particularly in slum cells. These were driven by the averaging of population densities in large areal units before model training. Age, accuracy, and aggregation of the input data also played a role in these errors. We suggest incorporating finer-scale training data into gridded population models generally, and WorldPop-Global-Unconstrained in particular (e.g., from routine household surveys or slum community population counts), and use of new building footprint datasets as a covariate to improve cell-level accuracy (as done in some new WorldPop-Global-Constrained datasets). It is important to measure accuracy of gridded population datasets at spatial scales more consistent with how the data are being applied, especially if they are to be used for monitoring key development indicators at neighbourhood scales within cities.

Original publication

DOI

10.1371/journal.pone.0271504

Type

Journal article

Journal

PLOS ONE

Publisher

Public Library of Science (PLoS)

Publication Date

21/07/2022

Volume

17

Pages

e0271504 - e0271504