Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Klebsiella pneumoniae poses a significant healthcare challenge due to its multidrug resistance and diverse serotype landscape. This study aimed to explore the serotype diversity of 1072 K. pneumoniae and its association with geographical distribution, disease severity and antimicrobial/virulence patterns in India. Whole-genome sequencing was performed on the Illumina platform, and genomic analysis was carried out using the Kleborate tool. The analysis revealed a total of 78 different KL types, among which KL64 (n=274/1072, 26 %), KL51 (n=249/1072, 24 %), and KL2 (n=88/1072, 8 %) were the most prevalent. In contrast, only 13 distinct O types were identified, with O1/O2v1 (n=471/1072, 44 %), O1/O2v2 (n=353/1072, 33 %), and OL101 (n=66/1072, 6 %) being the predominant serotypes. The study identified 114 different sequence types (STs) with varying serotypes, with ST231 being the most predominant. O serotypes were strongly linked with STs, with O1/O2v1 predominantly associated with ST231. Simpson’s diversity index and Fisher’s exact test revealed higher serotype diversity in the north and east regions, along with intriguing associations between specific serotypes and resistance profiles. No significant association between KL or O types and disease severity was observed. Furthermore, we found the specific association of virulence factors yersiniabactin and aerobactin (P<0.05) with KL types but no association with O antigen types (P>0.05). Conventionally described hypervirulent clones (i.e. KL1 and KL2) in India lacked typical virulent markers (i.e. aerobactin), contrasting with other regional serotypes (KL51). The cumulative distribution of KL and O serotypes suggests that future vaccines may have to include either ~20 KL or four O types to cover >85 % of the carbapenemase-producing Indian K. pneumoniae population. The results highlight the necessity for comprehensive strategies to manage the diverse landscape of K. pneumoniae strains across different regions in India. Understanding regional serotype dynamics is pivotal for targeted surveillance, interventions, and tailored vaccine strategies to tackle the diverse landscape of K. pneumoniae infections across India. This article contains data hosted by Microreact.

Original publication

DOI

10.1099/mgen.0.001271

Type

Journal article

Journal

Microbial Genomics

Publisher

Microbiology Society

Publication Date

22/07/2024

Volume

10