Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Renewal models are widely used in statistical epidemiology as semi-mechanistic models of disease transmission. While primarily used for estimating the instantaneous reproduction number, they can also be used for generating projections, estimating elimination probabilities, modeling the effect of interventions, and more. We demonstrate how simple sequential Monte Carlo methods (also known as particle filters) can be used to perform inference on these models. Our goal is to acquaint a reader who has a working knowledge of statistical inference with these methods and models and to provide a practical guide to their implementation. We focus on these methods' flexibility and their ability to handle multiple statistical and other biases simultaneously. We leverage this flexibility to unify existing methods for estimating the instantaneous reproduction number and generating projections. A companion website SMC and epidemic renewal models provides additional worked examples, self-contained code to reproduce the examples presented here, and additional materials.

Original publication

DOI

10.1002/sim.70204

Type

Journal article

Journal

Statistics in medicine

Publication Date

08/2025

Volume

44

Addresses

Department of Statistics, University of Oxford, Oxford, UK.

Keywords

Humans, Models, Statistical, Monte Carlo Method, Computer Simulation, Basic Reproduction Number, Epidemics