Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract Mutation of the POLH gene encoding DNA polymerase η (pol η) causes the UV-sensitivity syndrome xeroderma pigmentosum-variant (XP-V) which is linked to the ability of pol η to accurately bypass UV-induced cyclobutane pyrimidine dimers during a process termed translesion synthesis. Pol η can also bypass other DNA damage adducts in vitro, including cisplatin-induced intrastrand adducts, although the physiological relevance of this is unknown. Here, we show that independent XP-V cell lines are dramatically more sensitive to cisplatin than the same cells complemented with functional pol η. Similar results were obtained with the chemotherapeutic agents, carboplatin and oxaliplatin, thus revealing a general requirement for pol η expression in providing tolerance to these platinum-based drugs. The level of sensitization observed was comparable to that of XP-A cells deficient in nucleotide excision repair, a recognized and important mechanism for repair of cisplatin adducts. However, unlike in XP-A cells, the absence of pol η expression resulted in a reduced ability to overcome cisplatin-induced S phase arrest, suggesting that pol η is involved in translesion synthesis past these replication-blocking adducts. Subcellular localization studies also highlighted an accumulation of nuclei with pol η foci that correlated with the formation of monoubiquitinated proliferating cell nuclear antigen following treatment with cisplatin, reminiscent of the response to UV irradiation and further indicating a role for pol η in dealing with cisplatin-induced damage. Together, these data show that pol η represents an important determinant of cellular responses to cisplatin, which could have implications for acquired or intrinsic resistance to this key chemotherapeutic agent.

Original publication

DOI

10.1158/0008-5472.can-05-1095

Type

Journal article

Journal

Cancer Research

Publisher

American Association for Cancer Research (AACR)

Publication Date

01/11/2005

Volume

65

Pages

9799 - 9806