Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Somatic alterations to the genomes of solid tumours, which in some cases represent actionable drivers, provide diagnostic and prognostic insight into these complex diseases. Spatial and longitudinal tracking of somatic genomic alterations (SGAs) in patient tumours has emerged as a new avenue of investigation, not only as a disease monitoring strategy, but also to improve our understanding of heterogeneity and clonal evolution from diagnosis through disease progression. Furthermore, analysis of circulating-free DNA (cfDNA) in the so-called "liquid biopsy" has emerged as a non-invasive method to identify genomic information to inform targeted therapy and may also capture the heterogeneity of the primary and metastatic tumours. Considering the potential of cfDNA analysis as a translational laboratory tool in clinical practice, establishing the extent to which cfDNA represents the SGAs of tumours, particularly actionable driver alterations, becomes a matter of importance, warranting standardisation of methods and practices. Here, we assess the utilisation of cfDNA for molecular profiling of SGAs in tumour tissue across a broad range of solid tumours. Moreover, we examine the underlying factors contributing to discordance of detected SGAs between cfDNA and tumour tissue.

Original publication

DOI

10.3390/cancers11121938

Type

Journal article

Journal

Cancers

Publication Date

12/2019

Volume

11

Addresses

Department of Life Sciences, Birmingham City University, Birmingham B15 3TN, UK.