Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The influenza pandemic of 1918-19 was the most devastating pandemic of the 20th century. It killed an estimated 50-100 million people worldwide. In late 1918, when the severity of the disease was apparent, the Australian Quarantine Service was established. Vessels returning from overseas and inter-state were intercepted, and people were examined for signs of illness and quarantined. Some of these vessels carried the infection throughout their voyage and cases were prevalent by the time the ship arrived at a Quarantine Station. We study four outbreaks that took place on board the Medic, Boonah, Devon, and Manuka in late 1918. These ships had returned from overseas and some of them were carrying troops that served in the First World War. By analysing these outbreaks under a stochastic Bayesian hierarchical modeling framework, we estimate the transmission rates among crew and passengers aboard these ships. Furthermore, we ask whether the removal of infectious, convalescent, and healthy individuals after arriving at a Quarantine Station in Australia was an effective public health response.

Original publication

DOI

10.1371/journal.pcbi.1011656

Type

Journal article

Journal

PLoS computational biology

Publication Date

11/2023

Volume

19

Addresses

School of Mathematics and Statistics,The University of Melbourne, Melbourne, Australia.

Keywords

Humans, Bayes Theorem, Disease Outbreaks, Travel, Ships, Australia, Influenza, Human, Hospitals, Isolation, Pandemics