Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

As most disease causing pathogens require transmission from an infectious individual to a susceptible individual, continued persistence of the pathogen within the population requires the replenishment of susceptibles through births, immigration, or waning immunity. Consider the introduction of an unknown infectious disease into a fully susceptible population where it is not known how long immunity is conferred once an individual recovers from infection. If, initially, the prevalence of disease increases (that is, the infection takes off), the number of infectives will usually decrease to a low level after the first major outbreak. During this post-outbreak period, the disease dynamics may be influenced by stochastic effects and there is a non-zero probability that the epidemic will die out. Die out in this period following the first major outbreak is known as an epidemic fade-out. If the disease does not die out, the susceptible population may be replenished by the waning of immunity, and a second wave may start. In this study, we investigate if the rate of waning immunity (and other epidemiological parameters) can be reliably estimated from multiple outbreak data, in which some outbreaks display epidemic fade-out and others do not. We generated synthetic outbreak data from independent simulations of stochastic SIRS models in multiple communities. Some outbreaks faded-out and some did not. We conducted Bayesian parameter estimation under two alternative approaches: independently on each outbreak and under a hierarchical framework. When conducting independent estimation, the waning immunity rate was poorly estimated and biased towards zero when an epidemic fade-out was observed. However, under a hierarchical approach, we obtained more accurate and precise posterior estimates for the rate of waning immunity and other epidemiological parameters. The greatest improvement in estimates was obtained for those communities in which epidemic fade-out was observed. Our findings demonstrate the feasibility and value of adopting a Bayesian hierarchical approach for parameter inference for stochastic epidemic models.

Original publication

DOI

10.1016/j.idm.2023.10.002

Type

Journal article

Journal

Infectious Disease Modelling

Publication Date

12/2023

Volume

8

Pages

1127 - 1137

Addresses

School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia.