Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BackgroundInfectiousness of respiratory viral infections is quantified as plaque forming units (PFU), requiring resource-intensive viral culture that is not routinely performed. We hypothesised that RNA viral load (VL) decline time (e-folding time) in people might serve as an alternative marker of infectiousness.AimThis study's objective was to evaluate the association of RNA VL decline time with RNA and PFU VL area under the curve (AUC) and transmission risk for SARS-CoV-2 and influenza A virus.MethodsIn SARS-CoV-2 and influenza A virus community cohorts, viral RNA was quantified by reverse transcription quantitative PCR in serial upper respiratory tract (URT)-samples collected within households after an initial household-member tested positive for one virus. We evaluated correlations between RNA VL decline time and RNA and PFU-VL AUC. Associations between VL decline time and transmission risk in index-contact pairs were assessed.ResultsIn SARS-CoV-2 cases, we observed positive correlations between RNA VL decline time and RNA and PFU VL AUC with posterior probabilities 1 and 0.96 respectively. In influenza A cases a positive correlation between RNA VL decline time and RNA VL AUC was observed, with posterior probability of 0.87. Index case VL decline times one standard deviation above the cohort-mean showed a relative increase in secondary attack rates of 39% (95% credible interval (CrI): -6.9 to 95%) for SARS-CoV-2 and 25% (95% CrI: -11 to 71%) for influenza A virus.ConclusionWe identify VL decline time as a potential marker of infectiousness and transmission risk for SARS-CoV-2 and influenza A virus. Early ascertainment of VL kinetics as part of surveillance of new viruses or variants could inform public health decision making.

Original publication

DOI

10.2807/1560-7917.es.2025.30.6.2400234

Type

Journal

Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin

Publication Date

02/2025

Volume

30

Addresses

NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, United Kingdom.

Keywords

ATACCC Study Investigators, Humans, Influenza A virus, Respiratory Tract Infections, RNA, Viral, Viral Load, Kinetics, Adolescent, Adult, Middle Aged, Child, Hong Kong, England, Female, Male, Influenza, Human, COVID-19, SARS-CoV-2