Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Instantaneous contact tracing New analyses indicate that severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2) is more infectious and less virulent than the earlier SARS-CoV-1, which emerged in China in 2002. Unfortunately, the current virus has greater epidemic potential because it is difficult to trace mild or presymptomatic infections. As no treatment is currently available, the only tools that we can currently deploy to stop the epidemic are contact tracing, social distancing, and quarantine, all of which are slow to implement. However imperfect the data, the current global emergency requires more timely interventions. Ferretti et al. explored the feasibility of protecting the population (that is, achieving transmission below the basic reproduction number) using isolation coupled with classical contact tracing by questionnaires versus algorithmic instantaneous contact tracing assisted by a mobile phone application. For prevention, the crucial information is understanding the relative contributions of different routes of transmission. A phone app could show how finite resources must be divided between different intervention strategies for the most effective control. Science , this issue p. eabb6936

Original publication

DOI

10.1126/science.abb6936

Type

Journal article

Journal

Science

Publisher

American Association for the Advancement of Science (AAAS)

Publication Date

08/05/2020

Volume

368