Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Next generation sequencing of pooled samples is an effective approach for studies of variability and differentiation in populations. In this paper we provide a comprehensive set of estimators of the most common statistics in population genetics based on the frequency spectrum, namely the Watterson estimator θW, nucleotide pairwise diversity Π, Tajima's D, Fu and Li's D and F, Fay and Wu's H, McDonald-Kreitman and HKA tests and FST, corrected for sequencing errors and ascertainment bias. In a simulation study, we show that pool and individual θ estimates are highly correlated and discuss how the performance of the statistics vary with read depth and sample size in different evolutionary scenarios. As an application, we reanalyse sequences from Drosophila mauritiana and from an evolution experiment in Drosophila melanogaster. These methods are useful for population genetic projects with limited budget, study of communities of individuals that are hard to isolate, or autopolyploid species.

Original publication

DOI

10.1111/mec.12522

Type

Journal article

Journal

Molecular ecology

Publication Date

11/2013

Volume

22

Pages

5561 - 5576

Addresses

Center for Research in Agricultural Genomics (CRAG), UAB, 08193, Bellaterra, Spain.

Keywords

Animals, Drosophila, Models, Statistical, Sample Size, Genetics, Population, Genomics, Models, Genetic, Computer Simulation, High-Throughput Nucleotide Sequencing