An algorithm for the detection of individual breaths from the pulse oximeter waveform
Leonard P., Grubb NR., Addison PS., Clifton D., Watson JN.
Objectives. To determine if wavelet analysis techniques can be used to reliably identify individual breaths from the photoplethysmogram (PPG). Methods. Photoplethysmograms were obtained from 22 healthy adult volunteers timing their respiration rate in synchronisation with a metronome. A secondary timing signal was obtained by asking the volunteers to actuate a small push button switch, held in their right hand, in synchronisation with their respiration. Each PPG was analyzed using primary wavelet decomposition and two new, related, secondary decompositions to determine the accuracy of individual breath detection. Results. The optimal breath capture was obtained by manually polling the three techniques, allowing detection of 466 out of the 472 breaths studied; a detection rate of 98.7% with no false positive breaths detected. Conclusion. Our technique allows the accurate capture of individual breaths from the photoplethysmogram, and leads the way for developing a simple non-invasive combined respiration and saturation monitor. © Springer Science + Business Media, Inc. 2005.