Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

As the coronavirus disease 2019 spread globally, emerging variants such as B.1.1.529 quickly became dominant worldwide. Sustained community transmission favors the proliferation of mutated sub-lineages with pandemic potential, due to cross-national mobility flows, which are responsible for consecutive cases surge worldwide. We show that, in the early stages of an emerging variant, integrating data from national genomic surveillance and global human mobility with large-scale epidemic modeling allows to quantify its pandemic potential, providing quantifiable indicators for pro-active policy interventions. We validate our framework on worldwide spreading variants and gain insights about the pandemic potential of BA.5, BA.2.75, and other sub- and lineages. We combine the different sources of information in a simple estimate of the pandemic delay and show that only in combination, the pandemic potentials of the lineages are correctly assessed relative to each other. Compared to a country-level epidemic intelligence, our scalable integrated approach, that is pandemic intelligence, permits to enhance global preparedness to contrast the pandemic of respiratory pathogens such as SARS-CoV-2.

Original publication




Journal article


PNAS nexus

Publication Date





Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany.