Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The proliferation of decentralised electronic healthcare records (EHRs) across medical institutions requires innovative federated learning strategies for collaborative data analysis and global model training, prioritising data privacy. A prevalent issue during decentralised model training is the data-view discrepancies across medical institutions that arises from differences or availability of healthcare services, such as blood test panels. The prevailing way to handle this issue is to select a common subset of features across institutions to make data-views consistent. This approach, however, constrains some institutions to shed some critical features that may play a significant role in improving the model performance. This paper introduces a federated learning framework that relies on augmented graph attention networks to address data-view heterogeneity. The proposed framework utilises an alignment augmentation layer over self-attention mechanisms to weigh the importance of neighbouring nodes when updating a node’s embedding irrespective of the data-views. Furthermore, our framework adeptly addresses both the temporal nuances and structural intricacies of EHR datasets. This dual capability not only offers deeper insights but also effectively encapsulates EHR graphs’ time-evolving nature. Using diverse real-world datasets, we show that the proposed framework significantly outperforms conventional FL methodology for dealing with heterogeneous data-views.

Type

Conference paper

Publication Date

01/01/2024

Volume

238

Pages

1342 - 1350