Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractElucidating the adaptive immune characteristics of natural protection to Lassa fever (LF) is vital in designing and selecting optimal vaccine candidates. With rejuvenated interest in LF and a call for accelerated research on the Lassa virus (LASV) vaccine, there is a need to define the correlates of natural protective immune responses to LF. Here, we describe cellular and antibody immune responses present in survivors of LF (N = 370) and their exposed contacts (N = 170) in a LASV endemic region in Nigeria. Interestingly, our data showed comparable T cell and binding antibody responses from both survivors and their contacts, while neutralizing antibody responses were primarily seen in the LF survivors and not their contacts. Neutralizing antibody responses were found to be cross-reactive against all five lineages of LASV with a strong bias to Lineage II, the prevalent strain in southern Nigeria. We demonstrated that both T cell and antibody responses were not detectable in peripheral blood after a decade in LF survivors. Notably LF survivors maintained high levels of detectable binding antibody response for six months while their contacts did not. Lastly, as potential vaccine targets, we identified the regions of the LASV Glycoprotein (GP) and Nucleoprotein (NP) that induced the broadest peptide-specific T cell responses. Taken together this data informs immunological readouts and potential benchmarks for clinical trials evaluating LASV vaccine candidates.

Original publication

DOI

10.1038/s41598-022-26045-w

Type

Journal

Scientific Reports

Publisher

Springer Science and Business Media LLC

Publication Date

25/12/2022

Volume

12