Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Calcium sparks in cardiac muscle cells occur when a cluster of Ca2+ channels open and release Ca2+ from an internal store. A simplified model of Ca2+ sparks has been developed to describe the dynamics of a cluster of channels, which is of the form of a continuous time Markov chain with nearest neighbour transitions and slowly varying jump functions. The chain displays metastability, whereby the probability distribution of the state of the system evolves exponentially slowly, with one of the metastable states occurring at the boundary. An asymptotic technique for analysing the Master equation (a differential-difference equation) associated with these Markov chains is developed using the WKB and projection methods. The method is used to re-derive a known result for a standard class of Markov chains displaying metastability, before being applied to the new class of Markov chains associated with the spark model. The mean first passage time between metastable states is calculated and an expression for the frequency of calcium sparks is derived. All asymptotic results are compared with Monte Carlo simulations.

Original publication

DOI

10.1017/s0956792505006194

Type

Journal article

Journal

European Journal of Applied Mathematics

Publisher

Cambridge University Press (CUP)

Publication Date

08/2005

Volume

16

Pages

427 - 446