Genomic epidemiology of global Klebsiella pneumoniae carbapenemase (KPC)-producing Escherichia coli
Stoesser N., Sheppard AE., Peirano G., Anson LW., Pankhurst L., Sebra R., Phan HTT., Kasarskis A., Mathers AJ., Peto TEA., Bradford P., Motyl MR., Walker AS., Crook DW., Pitout JD.
AbstractThe dissemination of carbapenem resistance in Escherichia coli has major implications for the management of common infections. blaKPC, encoding a transmissible carbapenemase (KPC), has historically largely been associated with Klebsiella pneumoniae, a predominant plasmid (pKpQIL), and a specific transposable element (Tn4401, ~10 kb). Here we characterize the genetic features of blaKPC emergence in global E. coli, 2008–2013, using both long- and short-read whole-genome sequencing. Amongst 43/45 successfully sequenced blaKPC-E. coli strains, we identified substantial strain diversity (n = 21 sequence types, 18% of annotated genes in the core genome); substantial plasmid diversity (≥9 replicon types); and substantial blaKPC-associated, mobile genetic element (MGE) diversity (50% not within complete Tn4401 elements). We also found evidence of inter-species, regional and international plasmid spread. In several cases blaKPC was found on high copy number, small Col-like plasmids, previously associated with horizontal transmission of resistance genes in the absence of antimicrobial selection pressures. E. coli is a common human pathogen, but also a commensal in multiple environmental and animal reservoirs, and easily transmissible. The association of blaKPC with a range of MGEs previously linked to the successful spread of widely endemic resistance mechanisms (e.g. blaTEM, blaCTX-M) suggests that it may become similarly prevalent.