Crystal structure of the complex between CD8αα human and HLA-A2
Gao GF., Tormo J., Gerth UC., Wyer JR., McMichael AJ., Stuart DI., Bell JI., Jones EY., Jakobsen BK.
The dimeric cell-surface glycoprotein CD8 is crucial to the positive selection of cytotoxic T cells in the thymus. The homodimer CD8αα or the heterodimer αβ stabilizes the interaction of the T-cell antigen receptor (TCR) with major histocompatibility complex (MHC) class l/peptide by binding to the class I molecule. Here we report the crystal structure at 2.7 Å resolution of a complex between CD8αα and the human MHC molecule HLA-A2, which is associated with peptide. CD8αα binds one HLA-A2/peptide molecule, interfacing with the α2 and α3 domains of HLA-A2 and also contacting β2- microglobulin. A flexible loop of the α3 domain (residues 223-229) is damped between the complementarity-determining region (CDR)-like loops of the two CD8 subunits in the classic manner of an antibody-antigen interaction, precluding the binding of a second MHC molecule. The position of the α3 domain is different from that in uncomplexed HLA-A2 (refs 3, 4), being most similar to that in the TCR/Tax/HLA-A2 complex, but no conformational change extends to the MHC/peptide surface presented for TCR recognition. Although these shifts in α3 may provide a synergistic modulation of affinity, the binding of CD8 to MHC is dearly consistent with an avidity-based contribution from CD8 to TCR-peptide-MHC interactions.